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Abstract. In this paper, a method is developed to obtain rational solutions of integrable
equations which include KdV, Boussinesq, KP, Itb,+ 1)-dimensional CDGKS, Ramani and

(2 + 1)-dimensional CDGKS equations. The key step that we use to find rational solutions
of these equations is the use of nonlinear superposition formulae. All these rational solutions
obtained for each equation are connected byaekBind transformation, which enables us to find
other new solutions through the nonlinear superposition of rational solutions and other known
solutions.

1. Introduction

As is known, it is of both theoretical and practical value to search for rational solutions of
integrable equations. In theory, it will greatly help to formulate a criterion for integrability
as the existence of an infinite sequence of rational solutions appears to be equivalent to
having the Painleve property shared by integrable equations [1]. In practice, the rational
solutions are of, at least, potential value in physical applications. The question of rational
solutions of integrable equations has been discussed widely in the literature since the late
1970’s, and different methods have been developed for the construction of rational solutions.
For example, the rational solutions of the KdV equation were first discovered by Airault
et al [2]. Further results and variants were obtained by Adler and Moser [3], Krichever
[4], Manakovet al [5], Ablowitz and Satsuma [6-8], Kyoto group [9, 10], Matveev [11],
Nimmo and Freeman [12], Segal and Wilson [13], Satsuma and Ishimori [14], Gilson and
Nimmo [15], Nakamura [16], Pelinovsky and Stepanyants [17, 18] and so on (see [1,19-23]
and references therein).

In this paper, we would like to seek rational solutions of integrable equations by using
the Hirota method and &klund transformations (BTs). The key step we employ to find
rational solutions of integrable equations is the use of nonlinear superposition formulae. As
we will see below, in most cases (especially(in+ 1) dimensions) the rational solutions
considered are connected by BTs without parameters, while in the literature soliton solutions
are connected by BTs with parameterscBlund parameters make it easy to derive nonlinear
superposition formulae. For example, using permutability of BTs, one can expect to find
corresponding nonlinear superposition formulae. Although permutability of BTs in general
still remains an open problem, it provides us with a hint of how to find superposition
formulae, and at this stage the only thing left to do is just to prove them directly. However,
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in the rational solution case, a general procedure to find superposition formulae seems
to be unclear. Besides, there is another point to be considered. In the soliton solution
case, once we have established a nonlinear superposition formula for them, it is clear that
we can systematically construst-soliton solutions from 1-soliton solutions step by step.
Unfortunately, in the rational solution case, there is no such general procedure available to
produce a sequence of rational solutions from corresponding superposition formulae.

This paper is organized as follows. Section 2 is devoted to the KP equation. We give
two different nonlinear superposition formulae to produce well known rational solutions.
However, using these results, we also obtain some new solutions of the KP equation.
We treat less well-studied equations such as (fo; 1)-dimensional CDGKS, Ramani
and (2 + 1)-dimensional CDGKS equation in sections 3—6. Rational solutions of these
equations are derived by BTs and superposition formulae. To our knowledge, the nonlinear
superposition formulae (3.3), (4.3) and (5.3) for the Itb;+ 1)-dimensional CDGKS and
Ramani equations are new. Conclusions and discussion are given in section 7. Finally, we
give three appendices. In appendix A, we list some bilinear operator identities which are
used in the paper. In appendix B, we give well known rational solutions to well studied
equations: KdV and Boussinesq equations using BTs and nonlinear superposition formulae.
It is of interest to note that these rational solutions obtained are connected by BTs which
are special cases of more general BTs with parameters. Thus it enables us to obtain other
solutions e.g. solutions through superposition of soliton solutions and rational solutions. It is
noted that these kind of solutions which are a mix of exponentials and rational expressions
have been considered to some extent previously; for instance Matveev's ‘positons’ [22]
have both an algebraic and exponential character although they have not been very widely
investigated. The proof details of proposition 2.2 are given in appendix C.

2. The KP equation

The KP equation is given by
(r + Gusty + Uyyy)x + auyy = 0. (2.2)

By the dependent variable transfoim= 2(In f),,, equation (2.1) is written in bilinear
form [24] as

(DyD; + Dj +aD)f - f =0 (2.2)
where the bilinear operatdd} D} is defined as [24—26]

D"Dla(x,t) - b(x,t) = (0y — )" (3 — )" a(x, )b(x', ')y 1=
A BT for (2.2) is [27]
(@D, + D>+ AD)f - f =0 (D, + D® —3aAD, —3aD,D,)f - f' =0 (2.3)

wherea? = %(x andA is an arbitrary constant. We represent (2.3) symbolicall;g‘b& .
Concerning (2.2), we have the following result [27].

Proposition 2.1. Let fp be a solution of (2.2). Suppose thatand f, are two solutions
of (2.2) such thatfo 25 f; (i = 1,2) and f; # 0 (j = 0, 1, 2). Then f;, defined by
fofiz=c[D; + %(/\2 — A fi- fe (wherec is a nonzero constant

is a new solution of (2.2) which is related # and f> under the BT (2.3) with parameters
A2 and xq respectively.
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Itis noted that in [7] Satsuma and Ablowitz have obtained so-called multi-lump solutions
of the KP equation by taking limits of the corresponding soliton solutions. Here we shall
use Proposition 2.1 to rederive these solutions.6Set x + P;y —a P?t. It is easily verified

that 1% 0; + B; (wherep; is a constant). Using Proposition 2.1, we know that
2

fiz= m[l)x + 3(—aPy +aP)](61+ B1) - (62 + B2)
2 2
= 6102 + (ﬁl + a(Pl—P2)> 02 + (/32 - M) 01+ B1B2
2(B2 — B1)
a(PL— P)

is a solution of (2.2). liw = —1, P, = Pf, 1 = —2/a(P1 — P{) and B, = 2/a(P1 — P{),
then we can obtain a so-called one-lump solution
. 12
f12 = 9191 - (1)1—71[’1*)2
Further, using Proposition 2.1, we have

/jgj/,"gl_*‘ﬂi \a})z
I \\fn

—ap, —aPy —al.

\,a\h‘ez'i-ﬂz ~ap, —ahy fin—_~ap,
E( >f23< )rfﬂ%
63 + B3 _aP2 S
I< )f%/

04+ Ba

If « =—1, P3= P}, P= P; andp; (i =1, 2, 3,4) are suitably chosen, then we can
obtain a so-called two-lump solut|on frofi2z4 In principle, along this line, we can obtain
multiple-lump solutions of the KP equation (2.2).

Now, we want to seek another series of polynomial solutions of (2.2). First we give
the following result.

Proposition 2.2. Supposefy, f1 and f1» are three solutions of (2.2)f0—0> f1—0> f12 and
fo, f1 # 0. Then there exists & determined by

Dy f1- fo = cfofi2 (wherec is a non-zero constant (2.4)
such thatf, is a new solution of (2.2) and

fo—0> f2—0> fi2.

Remark. In [28], a similar form of superposition formula (2.4) was given without proof
for the KdV equation to generate soliton solutions.

Using proposition 2.2, we can obtain polynomial solutions of (2.2). In the following,
we choosaez = 1 for the sake of convenience. In this case= 3. Now we choose seed

solutions Py = 1, P, = x. We know P0—0> Po—0> P;. It is easily verified thatP, = x?
satisfies thatD, Py - P, = —2PyP; and

DyPy- P, — 2D, Py- Py = 2P¢

DiPy- P, — 3D?Py- P +3D,Py- P14 ;D3Py- P, =0.
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We haveki(r,y) = 2, ka(t,y) = 0 andk(z,y) = 2y, where functionsk;(z, y) and
k(t,y) are introduced in appendix C. TherefoRe = P, + kPy = x? + 2y is a solution

of (2.2) and P0—0> P,. Next, using proposition 2.2, we know frorﬂ)—0> P0—0> P5, that

P3; = x4+ 6yx — 24t is a solution of (2.2) ancP0—0> P3. In this way, we can deduce a
series of polynomial solutions of the KP equation (2.2). Now by combining proposition 2.2
with proposition 2.1, we can proceed to obtain some new rational solutions. For examples,
consider equation (2.2) with = 3. From

~P_wx+py—=3pt—_0 ~P_wx+py—3p7t—_9¢
=g T =5 Tr=e
\“x‘2 +2y \'*x3 + 6xy — 24t/

whereF = %p(x2 +2y)(x + py — 3p?t) — x? + 2y — 2pxy + 6p°xt, G = %p(x + py —

3p?t) (x3 + 6xy — 24¢) + x3 + 6xy — 24t — (x + py — 3p?t)(3x? + 6y) and p is a constant,

we know F and G are rational solutions of (2.2) with = 3. It is also noticed that in

[27] Nakamura has obtained new solutions which are superposed by soliton solutions and
so-called ripplons. Naturally we can easily obtain new solutions which are superposed by
rational solutions and ripplons by combining Nakamura’'s results and the results obtained
here.

3. The Ito equation

The so-called Ito equation in bilinear form is [29, 30]

DD, + DY) f - f =0. (3.1)
A BT for (3.1) is [29, 30]
D.D,f-f'=0 (D, + D3 f - f =0. (32

We represent (3.2) symbolically by — f’. In [30], we have given a nonlinear
superposition formula for the Ito equation (3.1) and some particular solutions are presented
as an application of the result. In the following, we focus on seeking rational solutions of
(3.1). The result is obtained as follows.

Proposition 3.1. Let fy and f; be two solutions and lefy — fi(fo, f1 # 0). It is
assumed thaf, determined by

(D2 —2D) f1- fo=cf} (c is a constant (3.3)
satisfies that

Difi- o+ iD3fi- o+ 3D3fo-P =0 (3.4)
where P is determined by the relation

Dy fo- P = Dif1- fo. (3.5)
Then f, is a new solution of (3.1)fo — f2, and

Difi- fa+Difo- P=ci(t)f (3.6)

Difo- P+3D3fo- P+ 3D f1- fo=cat) f§ (3.7)

wherec;(¢) (i = 1, 2) is some suitable function of Furthermore, if we can choose suitable
P from (3.5) such that1(z) = c2(t) = 0 in (3.6) and (3.7), therP thus obtained is also a
new solution of (3.1) and; — P, f» — P.
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Proof.  First, using (3.3)—(3.5), we can show that
(Di+ DY) fo- f2=0.
Next we have from (D, + D3) fo - fil. f2 — [(D: + D3) fo - fol. f1 = O, that
DD fo- P+ 5D3fo- P+ 3D3f1- fol - f§ =0
which implies that (3.7) holds. Using (3.3), (3.4) and (3.7) we can deduce that (3.6) holds,
and, further, thatD, D, fy - f» = 0. Thereforef, is a new solution of (3.1) andy — f>.

Finally, if c¢1(z) = c2(¢) = 0 in (3.6) and (3.7), we can prove thatis also a solution of
(3.1) andfy, — P, fo — P similar to that in [30]. The details are omitted. O

Using proposition 3.1, we can obtain a series of rational solutions of the Ito
equation (3.1). In the following, we only give two examples.

Example 1. Choosef; = 1, fo = x. It is easily verified thatf, = tx + %zx“ satisfies
(38.3) withc = 0 and (3.4) withP =t — %x?’. Therefore,rx + %Zx“ is a solution of the
Ito equation (3.1) and — rx + lizx“. Futhermore, (3.6) and (3.7) hold with(z) = 0.

Thereforer — 1x% is also a solution of (3.1) and4» 7 — £x3, tx+ Sx* — 1 — zx% Next we
choosefo = tx+ 4x*, f1 = x. It can be verified thaf, = x1°+36x"r —1512c*2— 6048

satisfies (3.3)—(3.5) witlh = —54432 andP = 36x” + (A — 1512x% + Axt? (A is an
arbitrary constant). Therefore'® + 36x7r — 1512c%? — 6048c° is a new polynomial
solution of (3.1) andc'%+ 36x"r — 1512¢%2 — 6048ct® — tx + ,x*. More generally, it is
easily verified thatf; = x* and fo = tx + (18« — 6" (a # 1) are two solutions of the

lto equation (3.1) and® — rx® + (18x — 6)*""". A further detailed calculation shows that
fo = x4+ 9(6a — 2)x% 8t + (9o — 3)(108x — 360)x* 32 + (B — 2)(9 — 3)

x (108 — 360 x°1*

satisfies (3.3)—(3.5) witlh = 54(3« — 1)?(108& — 360) and

P = 3(18x — 6)x*15 + [ + (9o — 3)(108x — 360)] x%3r + Ax9s?

18« — 6

where A is an arbitrary constant. Therefore

X9 4 9(6a — 2)x* "8 + (9o — 3)(108& — 360)x* 312 + (6 — 2)(9 — 3)
x (108 — 360)x*73

is a solution of (3.1) and

1x® + @3 & x4 960 — 2)x* T + (90 — 3)(108x — 360)x*+3¢?

18 — 6
+(6a — 2)(9% — 3)(108x — 360)x%¢°.

Example 2. Choosefo = x° — 18¢% + 1080c%2 — 2160, f1 = — ¢x*. From example
1, we know fy and f; are two solutions of the Ito equation (3.1) afigl— f1. A detailed
calculation shows that

fo = x1 — 36x% + 5400r1%2 — 626400:%2 + 5443206°5:* — 1306368003:°
+130636806°

satisfies (3.3)~(3.5) witlk = 420 andP = —32x*2 4+ 180%2 — 11160033 + 324000%.
Therefore f> is a new polynomial solution of (3.1).
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4. The (1 + 1)-dimensional CDGKS equation

The (1 4 1)-dimensional CDGKS equation in bilinear form is [31-33]

(D°—D,D)f-f=0. (4.1)
A BT for (4.1) is [33]
D¥f.f'=0 (D, +3D))f - f =0. (4.2)

It is noted that in [34] we have given a nonlinear superposition formula for (4.1) and some
particular solutions are obtained as an application of the result. Here we focus on seeking
polynomial solutions of (4.1). To this end, I& and f; be two solutions of (4.1)fp, f1 # 0,

and fo — f1. Supposef, determined by

D3f1- fo=cff (c is a constant (4.3)
satisfies that
3D fo- P=3Dif1- fa+ 5D fi- fa+ D for P— PeDi fo- fo=k(1) fg (4.4)
wherek(z) is some function of and P is determined by

Dy f1- fa= Dy fo- P.
Now we have, by using (A5), that

(Do f)(Ds fo- fo) — Du(D3fo- f2) - fafo— %Dx(foz o) 12
=Dy f§-(D3fa- f1)=0
which implies that
D(Difo- fo)- f£=0
l.e.
Dfo- fo=ki(t) 1 (4.5)

wherek; (¢) is some function of. In the following we assume that(z) = 0 in (4.5). In
this case, we have

D3fo- fo=0.
Next, it follows from (D3 fo - f1) f2 — (D2 fo - f2) f1 = 0, that
1
Difo- P == D1 fo= =I5 (4.6)

Furthermore, we have, by using (A6)—(A8),
[(D: + 3D fo- f)(Dx fr+ fo) = Dl(Dy + 3D fo- fol - fufo=0
which implies that

—j,c‘l’ux[wt L 30D fo- fi)- f2=0
i.e.
(D, + 3D fo- fo=ka(0) 7 4.7)

whereky(t) is some function of. Finally, if k2(r) = 0 , we have
(Di + 3DY) fo - f2=0.
Thus f, is a new solution of (4.1) andy — f>.
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Using the above result, we can obtain polynomial solutions of(the 1)-dimensional
CDGKS equation (4.1). For example, chogge= x, f1 = 1. A direct calculation shows
that f, = 12 + & x° determined by (4.3) withr = —1 satisfies (4.4) with? = Jx* and
kit) =0(@G = 1,2) in (4.5) and (4.7). Therefore 12 6—10x5 is a polynomial solution of
(4.1). In general, suppose that two polynomi&lg_1)z.—4),2 and P,,—1)/2 are solutions
of (41), thatPn(g,n_l)/z — P(n_]_)(3n_4)/2, and that

n3n —1 n—1)@Gn -4
dean(S’n—l)/Z) = % degP(n_l)(g,,_4)/2) = LZ)

where the degrees af andt are defined by
degx) =1 degr) = 5.

Then we can seek a polynomial solutid®,1)3:+2),2 (dedPuin@Ei+2,2) = ( + 1)

(3n + 2)/2) of (4.1) by using the result obtained above. Thus it is possible to find more
polynomial solutions of (4.1). Next we choogg = x2, f1 = 1. A detailed calculation
shows thatf, = 12v% + ;¢ determined by (4.3) with = —1 satisfies (4.4) with

P = —12 + gx® andk(t) = 0, andk;(r) = 0 (i = 1,2) in (4.5) and (4.7). Therefore
12¢%t 4+ 5+.x" is a polynomial solution of (4.1). In general, suppose that two polynomials
P(n—l)(Sn—Z)/Z and P,1(3,,+1)/2 are solutions of (41), tha?,,(gn+1)/2 — P(n_l)(gn_z)/z, and that
n3n+1) n—1)03n—-2
T deq Py—1)@30—2)2) = —

Then we can seek a polynomial solutiaf,1)@.+4/2 (€A Put1y@ita2) = (m+ 1)

(3n + 4)/2) of (4.1) by using the result obtained above. Thus it is possible to find more
other polynomial solutions of (4.1).

deq Py@n+1/2) =

5. The Ramani equation

The so-called Ramani equation is [35]

(D —5D3D, —5D?) f - f =0. (5.1)
A BT for (5.1) is [36]
(D¥=D)f-f'=0  (D}+5DZD)f-f =0. (5.2)

We represent (5.2) symbolically by — f’. Concerning (5.1), we have the following
result.

Proposition 5.1. Let fy and f; be two solutions of (5.1) and lefy — f1 (fo, f1 # 0).
It is assumed thaf, determined by

(D3 +2D) f1- fo=cf} (c is a constant (5.3)
satisfies that

Difi- fo+3Difi- fo+ 3D3fo- P =0 (5.4)
where P is determined by the relation

D.fo-P = Dyf1- f2. (5.5)
Then we have

(D} =D fo- f2=0 (5.6)

ID3fo-P—Difo- P+3D3f1- fo=c1(t) fE (5.7)
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wherec1(¢) is some function of. Further, if f, and P satisfies

Df1 - fo+20D?D, f1 - fo+15D°fo- P +60D?D, fo- P 4 60c1(t)D*fo- fo=0  (5.8)

then f, is a solution of (5.1),fo — f> and we have

D2fo- P +20D2D, fo- P+ 15D f1 - fo+ 60DZD, f1 - f>+ 20c1(t) D2 fo - fo = co(t) f§
(5.9)

where c,(¢) is some function of. Moreover, ifc;(r) = 0 (i = 1, 2), thenP is also a
solution of (5.1) andfy — P, f, — P.

Proof.  Similar to the proof of proposition 3.1, we can show that (5.6) and (5.7) hold.
Furthermore, a detailed calculation shows t(riajJrSDfD,)fo- f2=0if f, and P satisfies
(5.8). Moreover, from

(D2 =D fo- filxfo— (D2 =D fo- folixfr =0

and

(D% +5D%D,) fo - fils f2 — (D> 4+5D?D)) fo - fal. f1 +5[(D3 — D)) fo - filexs f2
—5[(D? = D)) fo- foluwn L =0

we can deduce that (5.9) holds and

D3fi- fo—A4D2D, f1- fo— D2fo- P +4D?D, fo- P + 4c1(t) D? fo - fo =0.

Finally, if ¢;(z) =0 (i =1, 2) in (5.7) and (5.9), we can prove is a solution of (5.1) and
fj_ i P, fz — P. O

As an application of proposition 5.1, we can obtain some polynomial solutions of (5.1).
For example, choos¢y = x, f1 = 1. It is easily verified thatf, = tx — lizx4 satisfies
(5.3)-(5.5) and (5.8) witlr = 0 andP =t + zx°. Thereforerx — 5x* is a solution of the
Ramani equation (5.1) and— tx — lizx“. Futhermore, (5.7) and (5.9) hold with(z) = 0.
Thereforer + 1x% is also a solution of (5.1). Next we choogg= —tx + 5x* fi=x. It
can be verified thaf, = x'° — 36x"r — 1512c*? + 6048c° satisfies (5.3)—(5.5) and (5.8)
with ¢ = —54432 P = 36x" + (1512— ;5 A)x* + Axt? (A is an arbitrary constant) and
c1(t) = —A — 18144. Thereforer’® — 36x’r — 1512c%2 + 6048¢7° is a new polynomial
solution of (5.1) and*®— 36x7r — 1512¢%2 + 6048c12 — —rx + -5x*. In particular, when
A = —18144, we have;(t) = ca(t) = 0. ThereforeP = 36x’ + 3024¢% — 1814412 is
also a polynomial solution of (5.1)

6. The (2+ 1)-dimensional CDGKS equation

The (2 4+ 1)-dimensional CDGKS equation in bilinear form is [37, 38]

(D? —5D3D, —5D5+9D.Dy)f - f =0. (6.1)
A BT for (6.1) is [39]
(D}~ D, —3kD?+3k*D,)f - f' =0 (6.29)
(=D° —5D?D, + 5kD* — 5k?D® — 10k2D,, + 10kD, D, + 6D,)f - f' =0 (6.2)

where k is an arbitrary constant. In what follows, we represent (6.2) symbolically by
f—k> f'. Let fo be a solution of (6.1)fy # 0. Suppose thaf; (i = 1, 2) is a solution of
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(6.1) which is related tagfy under BT (6.2) withk;, i.e. fog fi i =1,2). Then we can
prove thatfi, defined by

[Dy — (k1 + ko)l fo- fio=[Dy + (k1 — k)] f1- f2 (6.3)

is a solution of (6.1) under certain conditions. The details are given in [39]. Using nonlinear
superposition formula (6.3), we can derive some polynomial solutions, soliton solutions and
other solutions of (6.1). Here we just give an example of a solution of (6.1). We choose
fo=1, fi =6;+ pi = x +3k?y + 5kt + p; (B; is a constanti = 1, 2). Itis easily verified

that 1 andy; + B; are two solutions of (6.1) and% 0; + B;. Thus from (6.3), we can obtain

ko — k1 (kZ — k3)B2 — 2k19 B (k2 — k3)B1 + 2k,
T kot k (ky+kp)2 (k1 + k)2
+[(k1 — k2) (B + B2) — (k1 + k2) (B2 — B1) + (k3 — kD) p1B2
+2(kp — ky) (k1 + k][ (ke + k)22

2

It can be verified thatf;, thus obtained is a polynomial solution of (6.1) am”gg f12,

fgﬁ f12. Similar to the KP case, along this line, it is natural to find more polynomial
solutions. We finish this section by giving another result for(@e 1)-dimensional CDGKS
equation (6.1).

Proposition 6.1. [39]. Let fo and f; be two solutions of (6.1) and ek 2 f1 (fo, f1 £ 0).
Suppose that there exigt and P such that the following relations hold:

D.fi-fa=D:fo- P (6.4)
iDfi-fo=Dyfr f2+ 3D3fo- P =0. (6.5)

Then we have

(D2 =Dy fo- f2=0 (6.6)
ID3fo-P—Dyfo- P+ 3D3f1- fo=cit,y) fE (6.7)

whereci (¢, y) is some function of andy. Further, if f, and P satisfies

—96D, f1- fo+ D2 f1- fo+20D?Dy f1 - f»+15D% fo - P+ 60D2D, fo - P
+60c1(t, y)DZ fo - fo=0 (6.8)

then f> is a solution of (6.1) and‘o—0> f2, and we have

—96D, fo- P+ D>fo- P+ 20D?D, fo- P +15D°f1 - fo+60D?D, f1 - f
+20c1(t, y) D2 fo - fo = calt, y) fE (6.9)

wherec,(t, y) is some function of. Moreover, ifc;(z, y) =0 (i = 1, 2), thenP is also a
solution of (6.1) andf1—0> P, f 4 P.

Using Proposition 6.1, we can also obtain some polynomial solutions of (6.1).
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7. Conclusion and discussion

In this paper, a method is developed to obtain rational solutions of integrable equations. We
have obtained rational solutions of KdV, Boussinesq, KP, (ite; 1)-dimensional CDGKS,
Ramani and(2 + 1)-dimensional CDGKS equations. There are many methods to obtain
rational solutions. Compared with these methods, here emphasis is placed on producing
rational solutions via nonlinear superposition formulae and showing that rational solutions
are connected by BTs. We have seen that besides well studied equations such as the KdV,
Boussinesq and KP, rational solutions of less studied equations such as the Ito and Ramani
can be obtained by this method. Furthermore, since rational solutions obtained in this paper
are connected by BTs which are special cases of more general BTs, it enables us to obtain
other types of solutions which are superposed by rational solutions and some particular
solutions, e.g. soliton solutions in the KdV case and ripplon solutions in the KP case and so
on. Besides, existence of nonlinear superposition formulae is an interesting topic by itself
in soliton theory, and it seems to be reasonable to view existence of nonlinear superposition
formulae as one of the common features shared by integrable equations. It is also noticed
that very recently there have been attempts to deduce integrable differential-difference and
difference equations from nonlinear superposition formulae (see, e.g. [40, 41]).
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Appendix A
The following bilinear operator identities hold for arbitrary functians, ¢ andd:
D.(D,a-b)-a®= D,(D.a - b) - a? (A1)
—abD3a -b + D, (D?a - a) - b*> = D, (D?a - b) - ab — (D?a - b)(D.a - b) (A2)
(Dsa - b)c — (Dsa - ¢)b = —aDb - ¢ (A3)
(D3a - b)c — (D3a - 0)b = —3a,, Db - ¢ + 3a,(Dyb - ©)x — 2a[D3b - ¢ + 3(Dyb - ¢) 1]
(A4)
D.a®- (D3¢ -b) = (D3a - b)(Dyc -a) — D,(D3a - b) - ca — %DX(D;?C -a) - b? (A5)

[(D; + 3D2)a - bl(Dyc - a) — D[(D; + 3D2)a - b] - ca — (Dya - b)[(D; + 3D2)c - a]
—D.ab - [(D; + 3D%)c-a] = 3D,a® - (Dyc - b) — ID.a®- (Dic - b)
+3{(D2a - b)(Dyc - a) — (Dya - b)(Dc - a)
—D,[(D% -b)-ca—ab - (D -a)]} (AB)
(D2a - b)(Dxc - a) — (Dya - b)(D3c - a) = — 5D - (Dyc - b)
+2D,[a® - (D2c-b) +5(Dfa - a) - (Dyc - b) + 10(D%a - a) - (D3c - b)]
(A7)
D.[(D3a-b)-ca—ab- (D a)] = —£D%%? - (D.c-b)
—2D3¥a? - (D3 - b) — (D?a - a) - (Dyc - b)]
—2.D.[a® - (D}c-b) +2(D%a-a) - (D3c-b) — 3(Dia - a) - (Dsc - b)].
(A8)
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Appendix B. The KdV and Boussinesq equations

In this appendix, we shall rederive the well known rational solutions of the KdV and
Boussinesq equations using BTs and nonlinear superposition formulae.
The KdV equation is
u; +6un, + g, =0. (B1)

By the dependent variable transfomm= 2(In f),,, equation (B.1) is written in bilinear
form as

D.(D, +D>f-f=0. (B2)
A BT for (B2) is
Dif-f'=0 (D, +D¥f-f =0. (B3)

We represent (B3) symbolically by — f'. It is evident that
f=f = f->Ff

Note that in [3] Adler and Moser first discovered that rational solutions of (B2) are generated
by the following formula:

Dy fn-1- fnv+1 = cfZ (B4)

by considering the factorization of the Sturm-Liouville operator. In [6], Ablowitz and
Satsuma recovered (B4) by limiting the corresponding nonlinear superposition formula of
the KdV soliton solutions. Here we shall establish the nonlinear superposition formula of
rational solutions for the KdV equation (B2) directly and rigorously. By means of BT (B3),
we have the following result.

Proposition B.1. Supposefy and f; are two solutions of (B2) which are connected by
(B3), fo, f1 # 0. Then there exists af, determined by
D.fi- fo= ch2 (wherec is a non-zero constant (B5)

such thatf, is a new solution of (B2) which is connected with by BT (B3), i.e. fo — f>.

Proof.  First we choose a particular solutigh from (B5). Thus we have

Dyifi- fo=cfs. (BS)
In this case, we have, by using (Al) and (A2),

DD, f1- fa+2cDifo- fol - ff =0
which implies that

Difi- fa+2cD2fo- fo=ki(t) f{

wherek;(r) is a suitable function of. Now we choosef, = fo + f1 [ ka(')dr'. It is
easily verified thatf, satisfies (B5) and

D, fi- fa+2cD2fo- fo=0 Difi- fo=—cD%fo- fo. (B6)
Thus we have, by using (A3), (A4) and (B5)—(B6),

Dfo-fo=0  (Di+D)fo- f=0.
Thus we have completed the proof of proposition B.1. O
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In the following, we shall consider the rational solutions of (B2). To this end, we define
the degree ok and: as
degx) =1 deqr) = 3.

We have the following.

Corollary B.2.  Let two polynomialsPy 1,2 and Pv+1(v+2),2 be two solutions of (B2)
which are connected by BT (B3), and
N(N +1) (N+DH(N +2)

2 2 ’

Furthermore, suppose that there exists a polynoRialz) 3,2 of degree(N+2)(N+3)/2
such that

deq Pyvv+1/2) = ded Pivt1yv+2)2) =

2 .
D, PN(N+1)/2 . P(N+2)(N+3)/2 = CP(N+1)(N+2)/2 (¢ Is a non-zero constant

Then we have a polynomidy2)(v+3),2 Of degree(N +2)(N +3)/2 such thatP 2y +3),2
is a solution of (B2) antPy+1(v+2),2 = ﬁ(N+2)(N+3)/2. In particular, whenvV is not divided
by 3 Pivi2yn+3)/2 = Piv2yv+3)/2-

Using corollary B.2, we can easily re-obtain a series of rational solutions of (B2). For
example, choosé®, = 1, P, = x. It is evident thatPy and P, are two solutions of (B2)
and Py — Py. It is easily verified thatP; = x° satisfies

D, Py- P3 = —3PZ.
Further, we have
D,Py- P3—6D?P; - Py = 12PC.

ThereforeP; = Ps + 12t Py = x3 + 12 is a solution of (B2) and?, — P;. Next, it can be
verified thatPs = x® + 60x3r — 7202 satisfies

D, Py - Ps= —5P2.

Therefore Ps is a solution of (B2) and?; — Ps. Furthermore, it can be verified that
Pio = x4 180x "t + 302400:¢° satisfies

Dy Py Pio=—TP;.

ThereforePyq is also a solution of (B2) an®s — Pio. In general, along this line, we can
obtain a series of rational solutions of (B2). It is noted that these rational solutions obtained
for the KdV equation are connected by BT (B3) which is a special case of the following
BT with an arbitrary constant [24-26]:

(D2=Nf-f'=0  (D+3\D+D)f - f =0, (B7)
Concerning BT (B7), we have the following [24—26].

Proposition B.3. Let fy be a solution of (B2). Suppose th#t and f> are two solutions
of (B2) such thatfo =% £, (i = 1,2) and f; # 0 (j =0, 1, 2). Then fy, defined by
fofiz=cD,f1- f2 (wherec is a non-zero constant

is a new solution of (B2) which is related tf and f> under the BT (B7) with parameters
A2 and xq respectively.
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Now using proposition B.3 and the results above, we have, as an illustrative example,

12 5 3 2
/ \(3x—3px + p*x +12p t)e”
Q
I\p/{ \/(1—px)e” (1+Px)e‘"/+(3x+3px + p2x* + 12p%t) ™"
e’ +e™

Therefore(1— px) exp(n) + (1+ px) exp(—n) and(3x — 3px2+ p2x3+12p?t) exp(n) +
(Bx + 3px? + p2x3 + 12p%r) exp(—n) are solutions of the KdV equation (B2), where
n = px —4p3t +n° p andn® are constants. It is apparent that more solutions of (B2) can
be found following this line.

We now turn to the Boussinesq equation

3“” + 3(u2)xx + Uirxx = 0. (88)

By the dependent variable transforin= 2(In f),., equation (B8) is written in bilinear
form as

(D} +3D?f - f=0, (B9)
A BT for (B9) is [24]
(D, +Ddf-f'=0  (D3-3D,D)f-f =0. (B10)

We represent (B10) symbolically by — f’. Concerning (B9), we have the following
result.

Proposition B.4. Supposefy, f1 and fi1, are three solutions of (B9)o — f1 — fi2 —
fo and fy, f1 # 0. Then there exists afy, determined by

D, f1- f2=cfofi2 (wherec is a non-zero constant (B11)
such thatf, is a new solution of (B9) and
fo— f2— fiz

Proof.  First we choose a particular solutigh from (B11). Thus we have
Difi- f2= cfofiz.
In this case, we have
DD fr- fo+eDifo- fid - f{ =0
which implies that
D fi- fa+ €Dy fo- fra= k() ff (B12)
wherek(t) is a suitable function of. Now we choose

t
fo=fat+ f1/ k(t")dt'.
It is easily verified thatf, satisfies (B11) and

D fi- fa+cDifo- fiz=0. (B13)
Furthermore, a detailed calculation shows that

(Di+ D) fo-f2=0  (Di+ D) f2- frz=0

(D®—3D,D)fo- f2=0 (D3 —3D,D)f>- frz=0
Thus we have completed the proof of proposition B.4. d
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As an application of proposition B.4, we can obtain the homogeneous degree polynomial
solutions of (B9). To this end, we define the degree @nd: as

degx) =1 deqr) = 2.

We seek polynomial solutions of (B9) via the following steps. First choose polynomial seed
solutions fy, f1 and f1, of (B9) such that

o= fi—= fuz— fo
and degfo) = m, ded f1) = n, deq f1) = I. Secondly, we find a particular polynomigl
of degreen+/—n+1 such that (B11) holds. From (B12), we know when-{ is not divided
by 2, k(¢) is a monomial of of degree(m +1—n+1—-2—n)/2=(m+1—2n—1)/2, i.e.
k(t) = kt™+=2=D/2 (k is a constant). Whem +1 | 2, we can easily deduce that) = 0.
Now we set

fo=fo m + [ is not divided by 2
_ 7 2k (m+1—2n+1)/2 ; i

fz_f2+m+l—2n+lt m + 1 is not divided by 2
Then f; is a polynomial solution of (B9) and, — fo — f> — fi2, and we can choose
f12, fo, f2 as new seed solutions of the next step. In this way, we can obtain a series of
polynomial solutions of (B9) step by step. For example, choBse= 1, P, = x, P, =
t + 1x2, and we haveP, — Py — P, — Py. Itis easily verified thatPy = x* + 4¢x2
satisfiesD, Py - Py = —8P1P,, and D, Py - Py — 8D, Py - P, = —8tP¢. ThereforeP; =
Py —412Py = x*+4tx2 — 412 is a solution of (B9) and®> — P, — P4 — P,. Furthermore,
it can be verified thatts = x8 + 10x% + 20x2r2 + 403 satisfiesD, P; - Ps = —10P, P
and P, - P, — Ps — P4. In general, along this line, we can deduce recursively a series
of polynomial solutions of (B9). In the following we begin with another recursion process.
We havePy - P, — P, — Po. It is easily verified thatQ, = t — %xz satisfies that
D.P,-Q, = PyP, and D, P, - Q2 — D, Py - P, = 0. ThereforeQ, is a solution of (B9)
and P, — Py — Q, — P,. Furthermore, it can be verified théls = x> — 20r%x satisfies
D, Py- Qs =20P,Q5,, and D, Py - Qs — 20D, P, - Q> = 0. ThereforeQs is also a solution
of (B9) andQ, — P, — Qs — Q5. In general, along this line, we can deduce recursively
another series of polynomial solutions of (B9). Besides, it is noted that(if, ¢) is a
solution of (B9), thenf (—x, 1), f(x, —t) are also solutions of (B9). Thus more polynomial
solutions of (B9) can be found.

Appendix C. Proof of proposition 2.2

First we choose a particular solutignfrom (2.4). Thus we have

D, f1- F = cfofi2.
In this case, we have, similar to (B12),

C
Dyfi Ft —Difor fro=kit, ») ff (C1)
wherek(z, y) is a suitable function of andy. Furthermore, we have
0=[(D; + D} —3aD,D,) fo- fil fufr2 — fofos(D, + D} —3aD,Dy) f1 - f1a

1 3
=D fofiz- fE+ Efooflz R+ ZDx[(foo - f12) - fE

3a
+fofiz- (D2 f1- f)] — - De(Dyfo fra) - 11
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3a
=% Dy(Dcfo fro) - f1
1 3 3a
= D, |:th1 “F+>D%fo- fu— - Dyfo- flz} - ff
c 4 2
DDA FY - 2t DD ) - (D2 fo)
4C X X 1 4C X X X
3
+5 DD o f1) - fufi= fofy (DY fi+ fi2)]
1 3, 3a 5
=D:|-Difi-F+-Difo- fiz— —D,fo- fi2| - f1
c 4 2
Lo, f ~F)~f2+iD (D fr+ F) - (D2f1- 1)
4o % xJ1 1 4c x xJ1 xJ1 1
DD o+ fr)- £ = fofiz (D2fi-
S D:l(Drfo- frz S — fofiz- (DL fr- fu)l
M1 9 3a
=D, ED'fl - F+ Zfoo - fi2— ?Dyfo . f12} - ff

+7D,C(Dx‘fl - 1 ) f] Dx(Dx} - ) : (Bxfl : fl)
4C 4C . ‘
LX L[f‘l.l EfO’le E'fO’)lZ Eﬁ'l 'f
4 X 2 y 4C X | 1

which implies that

9% , 3ac
Difi-F+ —Difo- fiz— —

1
1 5 Dy fo- fio+ Zfol'F=k2(t,y)f12 (C2)

whereky(t, y) is a suitable function of, y. We can prove that

1 9, 3 1, ,
D, EDrfl'F+ZDxf0~f12—7Dyf0'f12+EDxf1'F - f1

1 1 )
=D, EDyfl‘F'i‘;DxfO'le 'fl

which implies k2, = k1,. We choosek(t, y) such thatk, = ko, k, = ki and set
fo=F +k(t,y) f1. Itis easily verified thatf, satisfies (2.4) and

Dyfl'f2+§DxfO‘f12=0 (C3)
D fi- f2+ %foo - fi2— %Dyfo - fi2+ %fol “f2=0. (C4)
Using (C3) and (C4), we can prove
@Dy + D) fo- fo=0 (D + D?—3aD,Dy) fo- fo=0
and
@Dy + D) fo- f12=0 (D, + D3 —3aD,D,) f>- fi2=0.

Thus we have completed the proof of proposition 2.2.
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