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Abstract. In this paper, a method is developed to obtain rational solutions of integrable
equations which include KdV, Boussinesq, KP, Ito,(1+ 1)-dimensional CDGKS, Ramani and
(2 + 1)-dimensional CDGKS equations. The key step that we use to find rational solutions
of these equations is the use of nonlinear superposition formulae. All these rational solutions
obtained for each equation are connected by a Bäcklund transformation, which enables us to find
other new solutions through the nonlinear superposition of rational solutions and other known
solutions.

1. Introduction

As is known, it is of both theoretical and practical value to search for rational solutions of
integrable equations. In theory, it will greatly help to formulate a criterion for integrability
as the existence of an infinite sequence of rational solutions appears to be equivalent to
having the Painleve property shared by integrable equations [1]. In practice, the rational
solutions are of, at least, potential value in physical applications. The question of rational
solutions of integrable equations has been discussed widely in the literature since the late
1970’s, and different methods have been developed for the construction of rational solutions.
For example, the rational solutions of the KdV equation were first discovered by Airault
et al [2]. Further results and variants were obtained by Adler and Moser [3], Krichever
[4], Manakovet al [5], Ablowitz and Satsuma [6–8], Kyoto group [9, 10], Matveev [11],
Nimmo and Freeman [12], Segal and Wilson [13], Satsuma and Ishimori [14], Gilson and
Nimmo [15], Nakamura [16], Pelinovsky and Stepanyants [17, 18] and so on (see [1, 19–23]
and references therein).

In this paper, we would like to seek rational solutions of integrable equations by using
the Hirota method and B̈acklund transformations (BTs). The key step we employ to find
rational solutions of integrable equations is the use of nonlinear superposition formulae. As
we will see below, in most cases (especially in(1+ 1) dimensions) the rational solutions
considered are connected by BTs without parameters, while in the literature soliton solutions
are connected by BTs with parameters. Bäcklund parameters make it easy to derive nonlinear
superposition formulae. For example, using permutability of BTs, one can expect to find
corresponding nonlinear superposition formulae. Although permutability of BTs in general
still remains an open problem, it provides us with a hint of how to find superposition
formulae, and at this stage the only thing left to do is just to prove them directly. However,
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in the rational solution case, a general procedure to find superposition formulae seems
to be unclear. Besides, there is another point to be considered. In the soliton solution
case, once we have established a nonlinear superposition formula for them, it is clear that
we can systematically constructN -soliton solutions from 1-soliton solutions step by step.
Unfortunately, in the rational solution case, there is no such general procedure available to
produce a sequence of rational solutions from corresponding superposition formulae.

This paper is organized as follows. Section 2 is devoted to the KP equation. We give
two different nonlinear superposition formulae to produce well known rational solutions.
However, using these results, we also obtain some new solutions of the KP equation.
We treat less well-studied equations such as Ito,(1 + 1)-dimensional CDGKS, Ramani
and (2 + 1)-dimensional CDGKS equation in sections 3–6. Rational solutions of these
equations are derived by BTs and superposition formulae. To our knowledge, the nonlinear
superposition formulae (3.3), (4.3) and (5.3) for the Ito,(1+ 1)-dimensional CDGKS and
Ramani equations are new. Conclusions and discussion are given in section 7. Finally, we
give three appendices. In appendix A, we list some bilinear operator identities which are
used in the paper. In appendix B, we give well known rational solutions to well studied
equations: KdV and Boussinesq equations using BTs and nonlinear superposition formulae.
It is of interest to note that these rational solutions obtained are connected by BTs which
are special cases of more general BTs with parameters. Thus it enables us to obtain other
solutions e.g. solutions through superposition of soliton solutions and rational solutions. It is
noted that these kind of solutions which are a mix of exponentials and rational expressions
have been considered to some extent previously; for instance Matveev’s ‘positons’ [22]
have both an algebraic and exponential character although they have not been very widely
investigated. The proof details of proposition 2.2 are given in appendix C.

2. The KP equation

The KP equation is given by

(ut + 6uux + uxxx)x + αuyy = 0. (2.1)

By the dependent variable transformu = 2(ln f )xx , equation (2.1) is written in bilinear
form [24] as

(DxDt +D4
x + αD2

y)f · f = 0 (2.2)

where the bilinear operatorDm
x D

n
t is defined as [24–26]

Dm
x D

n
t a(x, t) · b(x, t) ≡ (∂x − ∂x ′)m(∂t − ∂t ′)na(x, t)b(x ′, t ′)|x ′=x,t ′=t .

A BT for (2.2) is [27]

(aDy +D2
x + λDx)f · f ′ = 0 (Dt +D3

x − 3aλDy − 3aDxDy)f · f ′ = 0 (2.3)

wherea2 = 1
3α andλ is an arbitrary constant. We represent (2.3) symbolically byf

λ→ f ′.
Concerning (2.2), we have the following result [27].

Proposition 2.1. Let f0 be a solution of (2.2). Suppose thatf1 andf2 are two solutions

of (2.2) such thatf0
λi→ fi (i = 1, 2) andfj 6= 0 (j = 0, 1, 2). Thenf12 defined by

f0f12 = c[Dx + 1
2(λ2− λ1)]f1 · f2 (wherec is a nonzero constant)

is a new solution of (2.2) which is related tof1 andf2 under the BT (2.3) with parameters
λ2 andλ1 respectively.
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It is noted that in [7] Satsuma and Ablowitz have obtained so-called multi-lump solutions
of the KP equation by taking limits of the corresponding soliton solutions. Here we shall
use Proposition 2.1 to rederive these solutions. Setθi = x+Piy−αP 2

i t . It is easily verified

that 1
−aPi→ θi + βi (whereβi is a constant). Using Proposition 2.1, we know that

f12 = 2

a(P1− P2)
[Dx + 1

2(−aP2+ aP1)](θ1+ β1) · (θ2+ β2)

= θ1θ2+
(
β1+ 2

a(P1− P2)

)
θ2+

(
β2− 2

a(P1− P2)

)
θ1+ β1β2

+ 2(β2− β1)

a(P1− P2)

is a solution of (2.2). Ifα = −1, P2 = P ∗1 , β1 = −2/a(P1− P ∗1 ) andβ2 = 2/a(P1− P ∗1 ),
then we can obtain a so-called one-lump solution

f12 = θ1θ
∗
1 −

12

(P1− P ∗1 )2
.

Further, using Proposition 2.1, we have

If α = −1, P3 = P ∗1 , P4 = P ∗2 andβi (i = 1, 2, 3, 4) are suitably chosen, then we can
obtain a so-called two-lump solution fromf1234. In principle, along this line, we can obtain
multiple-lump solutions of the KP equation (2.2).

Now, we want to seek another series of polynomial solutions of (2.2). First we give
the following result.

Proposition 2.2. Supposef0, f1 andf12 are three solutions of (2.2).f0
0→ f1

0→ f12 and
f0, f1 6= 0. Then there exists af2 determined by

Dxf1 · f2 = cf0f12 (wherec is a non-zero constant) (2.4)

such thatf2 is a new solution of (2.2) and

f0
0→ f2

0→ f12.

Remark. In [28], a similar form of superposition formula (2.4) was given without proof
for the KdV equation to generate soliton solutions.

Using proposition 2.2, we can obtain polynomial solutions of (2.2). In the following,
we choosea = 1 for the sake of convenience. In this case,α = 3. Now we choose seed

solutionsP0 = 1, P1 = x. We knowP0
0→P0

0→P1. It is easily verified thatP̄2 = x2

satisfies thatDxP0 · P̄2 = −2P0P1 and

DyP0 · P̄2− 2DxP0 · P1 = 2P 2
0

DtP0 · P̄2− 9
2D

2
xP0 · P1+ 3DyP0 · P1+ 1

4D
3
xP0 · P̄2 = 0.
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We havek1(t, y) = 2, k2(t, y) = 0 and k(t, y) = 2y, where functionski(t, y) and
k(t, y) are introduced in appendix C. ThereforeP2 = P̄2 + kP0 = x2 + 2y is a solution

of (2.2) andP0
0→P2. Next, using proposition 2.2, we know fromP0

0→P0
0→P2, that

P3 = x3 + 6yx − 24t is a solution of (2.2) andP0
0→P3. In this way, we can deduce a

series of polynomial solutions of the KP equation (2.2). Now by combining proposition 2.2
with proposition 2.1, we can proceed to obtain some new rational solutions. For examples,
consider equation (2.2) withα = 3. From

whereF = 1
2p(x

2 + 2y)(x + py − 3p2t)− x2 + 2y − 2pxy + 6p2xt , G = 1
2p(x + py −

3p2t)(x3+ 6xy − 24t)+ x3+ 6xy − 24t − (x + py − 3p2t)(3x2+ 6y) andp is a constant,
we knowF andG are rational solutions of (2.2) withα = 3. It is also noticed that in
[27] Nakamura has obtained new solutions which are superposed by soliton solutions and
so-called ripplons. Naturally we can easily obtain new solutions which are superposed by
rational solutions and ripplons by combining Nakamura’s results and the results obtained
here.

3. The Ito equation

The so-called Ito equation in bilinear form is [29, 30]

Dt(Dt +D3
x)f · f = 0. (3.1)

A BT for (3.1) is [29, 30]

DxDtf · f ′ = 0 (Dt +D3
x)f · f ′ = 0. (3.2)

We represent (3.2) symbolically byf → f ′. In [30], we have given a nonlinear
superposition formula for the Ito equation (3.1) and some particular solutions are presented
as an application of the result. In the following, we focus on seeking rational solutions of
(3.1). The result is obtained as follows.

Proposition 3.1. Let f0 and f1 be two solutions and letf0 → f1(f0, f1 6= 0). It is
assumed thatf2 determined by

(D3
x − 2Dt)f1 · f2 = cf 2

0 (c is a constant) (3.3)

satisfies that

Dtf1 · f2+ 1
4D

3
xf1 · f2+ 3

4D
3
xf0 · P = 0 (3.4)

whereP is determined by the relation

Dxf0 · P = Dxf1 · f2. (3.5)

Thenf2 is a new solution of (3.1),f0→ f2, and

Dtf1 · f2+Dtf0 · P = c1(t)f
2
0 (3.6)

Dtf0 · P + 1
4D

3
xf0 · P + 3

4D
3
xf1 · f2 = c2(t)f

2
0 (3.7)

whereci(t) (i = 1, 2) is some suitable function oft . Furthermore, if we can choose suitable
P from (3.5) such thatc1(t) = c2(t) = 0 in (3.6) and (3.7), thenP thus obtained is also a
new solution of (3.1) andf1→ P, f2→ P .
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Proof. First, using (3.3)–(3.5), we can show that

(Dt +D3
x)f0 · f2 = 0.

Next we have from [(Dt +D3
x)f0 · f1]xf2− [(Dt +D3

x)f0 · f2]xf1 = 0, that

Dx [Dtf0 · P + 1
4D

3
xf0 · P + 3

4D
3
xf1 · f2] · f 2

0 = 0

which implies that (3.7) holds. Using (3.3), (3.4) and (3.7) we can deduce that (3.6) holds,
and, further, thatDxDtf0 · f2 = 0. Thereforef2 is a new solution of (3.1) andf0 → f2.
Finally, if c1(t) = c2(t) = 0 in (3.6) and (3.7), we can prove thatP is also a solution of
(3.1) andf1→ P, f2→ P similar to that in [30]. The details are omitted. �

Using proposition 3.1, we can obtain a series of rational solutions of the Ito
equation (3.1). In the following, we only give two examples.

Example 1. Choosef1 = 1, f0 = x. It is easily verified thatf2 = tx + 1
12x

4 satisfies
(3.3) with c = 0 and (3.4) withP = t − 1

6x
3. Therefore,tx + 1

12x
4 is a solution of the

Ito equation (3.1) andx → tx + 1
12x

4. Futhermore, (3.6) and (3.7) hold withci(t) = 0.
Thereforet− 1

6x
3 is also a solution of (3.1) and 1→ t− 1

6x
3, tx+ 1

12x
4→ t− 1

6x
3. Next we

choosef0 = tx+ 1
12x

4, f1 = x. It can be verified thatf2 = x10+36x7t−1512x4t2−6048xt3

satisfies (3.3)–(3.5) withc = −54432 andP = 36x7 + ( 1
12A − 1512)x4t + Axt2 (A is an

arbitrary constant). Thereforex10 + 36x7t − 1512x4t2 − 6048xt3 is a new polynomial
solution of (3.1) andx10+36x7t −1512x4t2−6048xt3→ tx+ 1

12x
4. More generally, it is

easily verified thatf1 = xα andf0 = txα + (18α − 6)x
α+3
(α 6= 1

3) are two solutions of the

Ito equation (3.1) andxα → txα + (18α− 6)x
α+3

. A further detailed calculation shows that

f2 = xα+9+ 9(6α − 2)xα+6t + (9α − 3)(108α − 360)xα+3t2+ (6α − 2)(9α − 3)

×(108α − 360)xαt3

satisfies (3.3)–(3.5) withc = 54(3α − 1)2(108α − 360) and

P = 3(18α − 6)xα+6+
[

A

18α − 6
+ (9α − 3)(108α − 360)

]
xα+3t + Axαt2

whereA is an arbitrary constant. Therefore

xα+9+ 9(6α − 2)xα+6t + (9α − 3)(108α − 360)xα+3t2+ (6α − 2)(9α − 3)

×(108α − 360)xαt3

is a solution of (3.1) and

txα + 1

18α − 6
xα+3→ xα+9+ 9(6α − 2)xα+6t + (9α − 3)(108α − 360)xα+3t2

+(6α − 2)(9α − 3)(108α − 360)xαt3.

Example 2. Choosef0 = x9− 18x6t + 1080x3t2− 2160t3, f1 = t − 1
6x

3. From example
1, we knowf0 andf1 are two solutions of the Ito equation (3.1) andf0→ f1. A detailed
calculation shows that

f2 = x18− 36x15t + 5400x12t2− 626400x9t3+ 5443200x6t4− 130636800x3t5

+130636800t6

satisfies (3.3)–(3.5) withc = 420 andP = − 5
6x

12 + 180x6t2 − 111600x3t3 + 324000t4.
Thereforef2 is a new polynomial solution of (3.1).
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4. The (1+ 1)-dimensional CDGKS equation

The (1+ 1)-dimensional CDGKS equation in bilinear form is [31–33]

(D6
x −DxDt)f · f = 0. (4.1)

A BT for (4.1) is [33]

D3
xf · f ′ = 0 (Dt + 3

2D
5
x)f · f ′ = 0. (4.2)

It is noted that in [34] we have given a nonlinear superposition formula for (4.1) and some
particular solutions are obtained as an application of the result. Here we focus on seeking
polynomial solutions of (4.1). To this end, letf0 andf1 be two solutions of (4.1),f0, f1 6= 0,
andf0→ f1. Supposef2 determined by

D3
xf1 · f2 = cf 2

0 (c is a constant) (4.3)

satisfies that
3
2Dtf0 · P − 1

2Dtf1 · f2+ 21
32D

5
xf1 · f2+ 27

32D
5
xf0 · P − 15

4 cD
2
xf0 · f0 = k(t)f 2

0 (4.4)

wherek(t) is some function oft andP is determined by

Dxf1 · f2 = Dxf0 · P.
Now we have, by using (A5), that

(D3
xf0 · f1)(Dxf2 · f0)−Dx(D

3
xf0 · f1) · f2f0− f0

f1
Dx(D

3
xf2 · f0) · f 2

1

= Dxf
2
0 · (D3

xf2 · f1) = 0

which implies that

Dx(D
3
xf0 · f2) · f 2

1 = 0

i.e.

D3
xf0 · f2 = k1(t)f

2
1 (4.5)

wherek1(t) is some function oft . In the following we assume thatk1(t) = 0 in (4.5). In
this case, we have

D3
xf0 · f2 = 0.

Next, it follows from (D3
xf0 · f1)f2− (D3

xf0 · f2)f1 = 0, that

D3
xf0 · P = −1

3
D3
xf1 · f2 = − c

3
f 2

0 . (4.6)

Furthermore, we have, by using (A6)–(A8),

[(Dt + 3
2D

5
x)f0 · f2](Dxf1 · f0)−Dx [(Dt + 3

2D
5
x)f0 · f2] · f1f0 = 0

which implies that

−f0

f1
Dx [(Dt + 3

2D
5
x)f0 · f2] · f 2

1 = 0

i.e.

(Dt + 3
2D

5
x)f0 · f2 = k2(t)f

2
1 (4.7)

wherek2(t) is some function oft . Finally, if k2(t) = 0 , we have

(Dt + 3
2D

5
x)f0 · f2 = 0.

Thusf2 is a new solution of (4.1) andf0→ f2.



Rational solutions of integrable equations 8231

Using the above result, we can obtain polynomial solutions of the(1+ 1)-dimensional
CDGKS equation (4.1). For example, choosef0 = x, f1 = 1. A direct calculation shows
that f2 = 12t + 1

60x
5 determined by (4.3) withc = −1 satisfies (4.4) withP = 1

36x
4 and

ki(t) = 0 (i = 1, 2) in (4.5) and (4.7). Therefore 12t + 1
60x

5 is a polynomial solution of
(4.1). In general, suppose that two polynomialsP(n−1)(3n−4)/2 andPn(3n−1)/2 are solutions
of (4.1), thatPn(3n−1)/2→ P(n−1)(3n−4)/2, and that

deg(Pn(3n−1)/2) = n(3n− 1)

2
deg(P(n−1)(3n−4)/2) = (n− 1)(3n− 4)

2
where the degrees ofx and t are defined by

deg(x) = 1 deg(t) = 5.

Then we can seek a polynomial solutionP(n+1)(3n+2)/2 (deg(P(n+1)(3n+2)/2) = (n + 1)
(3n + 2)/2) of (4.1) by using the result obtained above. Thus it is possible to find more
polynomial solutions of (4.1). Next we choosef0 = x2, f1 = 1. A detailed calculation
shows thatf2 = 12x2t + 1

210x
7 determined by (4.3) withc = −1 satisfies (4.4) with

P = −12t + 1
90x

5 and k(t) = 0, andki(t) = 0 (i = 1, 2) in (4.5) and (4.7). Therefore
12x2t + 1

210x
7 is a polynomial solution of (4.1). In general, suppose that two polynomials

P(n−1)(3n−2)/2 andPn(3n+1)/2 are solutions of (4.1), thatPn(3n+1)/2→ P(n−1)(3n−2)/2, and that

deg(Pn(3n+1)/2) = n(3n+ 1)

2
deg(P(n−1)(3n−2)/2) = (n− 1)(3n− 2)

2
.

Then we can seek a polynomial solutionP(n+1)(3n+4)/2 (deg(P(n+1)(3n+4)/2) = (n + 1)
(3n + 4)/2) of (4.1) by using the result obtained above. Thus it is possible to find more
other polynomial solutions of (4.1).

5. The Ramani equation

The so-called Ramani equation is [35]

(D6
x − 5D3

xDt − 5D2
t )f · f = 0. (5.1)

A BT for (5.1) is [36]

(D3
x −Dt)f · f ′ = 0 (D5

x + 5D2
xDt)f · f ′ = 0. (5.2)

We represent (5.2) symbolically byf → f ′. Concerning (5.1), we have the following
result.

Proposition 5.1. Let f0 andf1 be two solutions of (5.1) and letf0 → f1 (f0, f1 6= 0).
It is assumed thatf2 determined by

(D3
x + 2Dt)f1 · f2 = cf 2

0 (c is a constant) (5.3)

satisfies that

Dtf1 · f2+ 1
4D

3
xf1 · f2+ 3

4D
3
xf0 · P = 0 (5.4)

whereP is determined by the relation

Dxf0 · P = Dxf1 · f2. (5.5)

Then we have

(D3
x −Dt)f0 · f2 = 0 (5.6)

1
4D

3
xf0 · P −Dtf0 · P + 3

4D
3
xf1 · f2 = c1(t)f

2
0 (5.7)
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wherec1(t) is some function oft . Further, iff2 andP satisfies

D5
xf1 · f2+ 20D2

xDtf1 · f2+ 15D5
xf0 · P + 60D2

xDtf0 · P + 60c1(t)D
2
xf0 · f0 = 0 (5.8)

thenf2 is a solution of (5.1),f0→ f2 and we have

D5
xf0 · P + 20D2

xDtf0 · P + 15D5
xf1 · f2+ 60D2

xDtf1 · f2+ 20c1(t)D
2
xf0 · f0 = c2(t)f

2
0

(5.9)

where c2(t) is some function oft . Moreover, if ci(t) = 0 (i = 1, 2), thenP is also a
solution of (5.1) andf1→ P , f2→ P .

Proof. Similar to the proof of proposition 3.1, we can show that (5.6) and (5.7) hold.
Furthermore, a detailed calculation shows that(D5

x+5D2
xDt)f0 ·f2 = 0 if f2 andP satisfies

(5.8). Moreover, from

[(D3
x −Dt)f0 · f1]xxf2− [(D3

x −Dt)f0 · f2]xxf1 = 0

and

[(D5
x + 5D2

xDt)f0 · f1]xf2− [(D5
x + 5D2

xDt)f0 · f2]xf1+ 5[(D3
x −Dt)f0 · f1]xxxf2

−5[(D3
x −Dt)f0 · f2]xxxf1 = 0

we can deduce that (5.9) holds and

D5
xf1 · f2− 4D2

xDtf1 · f2−D5
xf0 · P + 4D2

xDtf0 · P + 4c1(t)D
2
xf0 · f0 = 0.

Finally, if ci(t) = 0 (i = 1, 2) in (5.7) and (5.9), we can proveP is a solution of (5.1) and
f1→ P, f2→ P . �

As an application of proposition 5.1, we can obtain some polynomial solutions of (5.1).
For example, choosef0 = x, f1 = 1. It is easily verified thatf2 = tx − 1

12x
4 satisfies

(5.3)–(5.5) and (5.8) withc = 0 andP = t + 1
6x

3. Thereforetx − 1
12x

4 is a solution of the
Ramani equation (5.1) andx → tx− 1

12x
4. Futhermore, (5.7) and (5.9) hold withci(t) = 0.

Thereforet + 1
6x

3 is also a solution of (5.1). Next we choosef0 = −tx + 1
12x

4, f1 = x. It
can be verified thatf2 = x10− 36x7t − 1512x4t2 + 6048xt3 satisfies (5.3)–(5.5) and (5.8)
with c = −54432, P = 36x7 + (1512− 1

12A)x
4t + Axt2 (A is an arbitrary constant) and

c1(t) = −A − 18144. Thereforex10− 36x7t − 1512x4t2 + 6048xt3 is a new polynomial
solution of (5.1) andx10−36x7t −1512x4t2+6048xt3→−tx+ 1

12x
4. In particular, when

A = −18144, we havec1(t) = c2(t) = 0. ThereforeP = 36x7 + 3024x4t − 18144xt2 is
also a polynomial solution of (5.1)

6. The (2+ 1)-dimensional CDGKS equation

The (2+ 1)-dimensional CDGKS equation in bilinear form is [37, 38]

(D6
x − 5D3

xDy − 5D2
y + 9DxDt)f · f = 0. (6.1)

A BT for (6.1) is [39]

(D3
x −Dy − 3kD2

x + 3k2Dx)f · f ′ = 0 (6.2a)

(−D5
x − 5D2

xDy + 5kD4
x − 5k2D3

x − 10k2Dy + 10kDxDy + 6Dt)f · f ′ = 0 (6.2b)

where k is an arbitrary constant. In what follows, we represent (6.2) symbolically by

f
k→ f ′. Let f0 be a solution of (6.1),f0 6= 0. Suppose thatfi (i = 1, 2) is a solution of
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(6.1) which is related tof0 under BT (6.2) withki , i.e. f0
ki→ fi (i = 1, 2). Then we can

prove thatf12 defined by

[Dx − (k1+ k2)]f0 · f12 = [Dx + (k1− k2)]f1 · f2 (6.3)

is a solution of (6.1) under certain conditions. The details are given in [39]. Using nonlinear
superposition formula (6.3), we can derive some polynomial solutions, soliton solutions and
other solutions of (6.1). Here we just give an example of a solution of (6.1). We choose
f0 = 1, fi = θi +βi ≡ x+3k2

i y+5k4
i t +βi (βi is a constant,i = 1, 2). It is easily verified

that 1 andθi+βi are two solutions of (6.1) and 1
ki→ θi+βi . Thus from (6.3), we can obtain

f12 = k2− k1

k2+ k1
θ1θ2− (k

2
1 − k2

2)β2− 2k1

(k1+ k2)2
θ1− (k

2
1 − k2

2)β1+ 2k2

(k1+ k2)2
θ2

+[(k1− k2)(β1+ β2)− (k1+ k2)(β2− β1)+ (k2
2 − k2

1)β1β2

+2(k2− k1)(k1+ k2)][(k1+ k2)
2]−1.

It can be verified thatf12 thus obtained is a polynomial solution of (6.1) andf1
k2→ f12,

f2
k1→ f12. Similar to the KP case, along this line, it is natural to find more polynomial

solutions. We finish this section by giving another result for the(2+1)-dimensional CDGKS
equation (6.1).

Proposition 6.1. [39]. Letf0 andf1 be two solutions of (6.1) and letf0
0→ f1 (f0, f1 6= 0).

Suppose that there existf2 andP such that the following relations hold:

Dxf1 · f2 = Dxf0 · P (6.4)
1
4D

3
xf1 · f2−Dyf1 · f2+ 3

4D
3
xf0 · P = 0. (6.5)

Then we have

(D3
x −Dy)f0 · f2 = 0 (6.6)

1
4D

3
xf0 · P −Dyf0 · P + 3

4D
3
xf1 · f2 = c1(t, y)f

2
0 (6.7)

wherec1(t, y) is some function oft andy. Further, iff2 andP satisfies

−96Dtf1 · f2+D5
xf1 · f2+ 20D2

xDyf1 · f2+ 15D5
xf0 · P + 60D2

xDyf0 · P
+60c1(t, y)D

2
xf0 · f0 = 0 (6.8)

thenf2 is a solution of (6.1) andf0
0→ f2, and we have

−96Dtf0 · P +D5
xf0 · P + 20D2

xDtf0 · P + 15D5
xf1 · f2+ 60D2

xDtf1 · f2

+20c1(t, y)D
2
xf0 · f0 = c2(t, y)f

2
0 (6.9)

wherec2(t, y) is some function oft . Moreover, ifci(t, y) = 0 (i = 1, 2), thenP is also a

solution of (6.1) andf1
0→P, f2

0→P .

Using Proposition 6.1, we can also obtain some polynomial solutions of (6.1).
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7. Conclusion and discussion

In this paper, a method is developed to obtain rational solutions of integrable equations. We
have obtained rational solutions of KdV, Boussinesq, KP, Ito,(1+1)-dimensional CDGKS,
Ramani and(2+ 1)-dimensional CDGKS equations. There are many methods to obtain
rational solutions. Compared with these methods, here emphasis is placed on producing
rational solutions via nonlinear superposition formulae and showing that rational solutions
are connected by BTs. We have seen that besides well studied equations such as the KdV,
Boussinesq and KP, rational solutions of less studied equations such as the Ito and Ramani
can be obtained by this method. Furthermore, since rational solutions obtained in this paper
are connected by BTs which are special cases of more general BTs, it enables us to obtain
other types of solutions which are superposed by rational solutions and some particular
solutions, e.g. soliton solutions in the KdV case and ripplon solutions in the KP case and so
on. Besides, existence of nonlinear superposition formulae is an interesting topic by itself
in soliton theory, and it seems to be reasonable to view existence of nonlinear superposition
formulae as one of the common features shared by integrable equations. It is also noticed
that very recently there have been attempts to deduce integrable differential-difference and
difference equations from nonlinear superposition formulae (see, e.g. [40, 41]).
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Appendix A

The following bilinear operator identities hold for arbitrary functionsa, b, c andd:

Dx(Dta · b) · a2 = Dt(Dxa · b) · a2 (A1)

−abD3
xa · b +Dx(D

2
xa · a) · b2 = Dx(D

2
xa · b) · ab − (D2

xa · b)(Dxa · b) (A2)

(Dta · b)c − (Dta · c)b = −aDtb · c (A3)

(D3
xa · b)c − (D3

xa · c)b = −3axxDxb · c + 3ax(Dxb · c)x − 1
4a[D3

xb · c + 3(Dxb · c)xx ]

(A4)

Dxa
2 · (D3

xc · b) = (D3
xa · b)(Dxc · a)−Dx(D

3
xa · b) · ca −

a

b
Dx(D

3
xc · a) · b2 (A5)

[(Dt + 3
2D

5
x)a · b](Dxc · a)−Dx [(Dt + 3

2D
5
x)a · b] · ca − (Dxa · b)[(Dt + 3

2D
5
x)c · a]

−Dxab · [(Dt + 3
2D

5
x)c · a] = 3

2Dta
2 · (Dxc · b)− 1

2Dxa
2 · (Dtc · b)

+ 3
2{(D5

xa · b)(Dxc · a)− (Dxa · b)(D5
xc · a)

−Dx [(D5
xa · b) · ca − ab · (D5

xc · a)]} (A6)

(D5
xa · b)(Dxc · a)− (Dxa · b)(D5

xc · a) = − 1
8D

5
xa

2 · (Dxc · b)
+ 1

8Dx [a2 · (D5
xc · b)+ 5(D4

xa · a) · (Dxc · b)+ 10(D2
xa · a) · (D3

xc · b)]
(A7)

Dx [(D5
xa · b) · ca − ab · (D5

xc · a)] = − 1
16D

5
xa

2 · (Dxc · b)
− 5

8D
3
x [a2 · (D3

xc · b)− (D2
xa · a) · (Dxc · b)]

− 5
16Dx [a2 · (D5

xc · b)+ 2(D2
xa · a) · (D3

xc · b)− 3(D4
xa · a) · (Dxc · b)].

(A8)
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Appendix B. The KdV and Boussinesq equations

In this appendix, we shall rederive the well known rational solutions of the KdV and
Boussinesq equations using BTs and nonlinear superposition formulae.

The KdV equation is

ut + 6uux + uxxx = 0. (B1)

By the dependent variable transformu = 2(ln f )xx , equation (B.1) is written in bilinear
form as

Dx(Dt +D3
x)f · f = 0. (B2)

A BT for (B2) is

D2
xf · f ′ = 0 (Dt +D3

x)f · f ′ = 0. (B3)

We represent (B3) symbolically byf → f ′. It is evident that

f → f ′ ⇐⇒ f ′ → f

Note that in [3] Adler and Moser first discovered that rational solutions of (B2) are generated
by the following formula:

DxfN−1 · fN+1 = cf 2
N (B4)

by considering the factorization of the Sturm–Liouville operator. In [6], Ablowitz and
Satsuma recovered (B4) by limiting the corresponding nonlinear superposition formula of
the KdV soliton solutions. Here we shall establish the nonlinear superposition formula of
rational solutions for the KdV equation (B2) directly and rigorously. By means of BT (B3),
we have the following result.

Proposition B.1. Supposef0 andf1 are two solutions of (B2) which are connected by
(B3), f0, f1 6= 0. Then there exists anf2 determined by

Dxf1 · f2 = cf 2
0 (wherec is a non-zero constant) (B5)

such thatf2 is a new solution of (B2) which is connected withf0 by BT (B3), i.e.f0→ f2.

Proof. First we choose a particular solutioñf2 from (B5). Thus we have

Dxf1 · f̃2 = cf 2
0 . (B5′)

In this case, we have, by using (A1) and (A2),

Dx [Dtf1 · f̃2+ 2cD2
xf0 · f0] · f 2

1 = 0

which implies that

Dtf1 · f̃2+ 2cD2
xf0 · f0 = k1(t)f

2
1

wherek1(t) is a suitable function oft . Now we choosef2 = f̃2 + f1
∫ t
k1(t

′) dt ′. It is
easily verified thatf2 satisfies (B5) and

Dtf1 · f2+ 2cD2
xf0 · f0 = 0 D3

xf1 · f2 = −cD2
xf0 · f0. (B6)

Thus we have, by using (A3), (A4) and (B5)–(B6),

D2
xf0 · f2 = 0 (Dt +D3

x)f0 · f2 = 0.

Thus we have completed the proof of proposition B.1. �
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In the following, we shall consider the rational solutions of (B2). To this end, we define
the degree ofx and t as

deg(x) = 1 deg(t) = 3.

We have the following.

Corollary B.2. Let two polynomialsPN(N+1)/2 andP(N+1)(N+2)/2 be two solutions of (B2)
which are connected by BT (B3), and

deg(PN(N+1)/2) = N(N + 1)

2
deg(P(N+1)(N+2)/2) = (N + 1)(N + 2)

2
.

Furthermore, suppose that there exists a polynomialP(N+2)(N+3)/2 of degree(N+2)(N+3)/2
such that

DxPN(N+1)/2 · P(N+2)(N+3)/2 = cP 2
(N+1)(N+2)/2 (c is a non-zero constant).

Then we have a polynomial̃P(N+2)(N+3)/2 of degree(N+2)(N+3)/2 such thatP̃(N+2)(N+3)/2

is a solution of (B2) andP(N+1)(N+2)/2→ P̃(N+2)(N+3)/2. In particular, whenN is not divided
by 3 P̃(N+2)(N+3)/2 = P(N+2)(N+3)/2.

Using corollary B.2, we can easily re-obtain a series of rational solutions of (B2). For
example, chooseP0 = 1, P1 = x. It is evident thatP0 andP1 are two solutions of (B2)
andP0→ P1. It is easily verified thatP3 = x3 satisfies

DxP0 · P3 = −3P 2
1 .

Further, we have

DtP0 · P3− 6D2
xP1 · P1 = 12P 2

0 .

ThereforeP̃3 = P3+ 12tP0 = x3+ 12t is a solution of (B2) andP1→ P̃3. Next, it can be
verified thatP6 = x6+ 60x3t − 720t2 satisfies

DxP1 · P6 = −5P̃ 2
3 .

ThereforeP6 is a solution of (B2) andP̃3 → P6. Furthermore, it can be verified that
P10 = x10+ 180x7t + 302400xt3 satisfies

DxP̃3 · P10 = −7P 2
6 .

ThereforeP10 is also a solution of (B2) andP6→ P10. In general, along this line, we can
obtain a series of rational solutions of (B2). It is noted that these rational solutions obtained
for the KdV equation are connected by BT (B3) which is a special case of the following
BT with an arbitrary constantλ [24–26]:

(D2
x − λ)f · f ′ = 0 (Dt + 3λDx +D3

x)f · f ′ = 0. (B7)

Concerning BT (B7), we have the following [24–26].

Proposition B.3. Let f0 be a solution of (B2). Suppose thatf1 andf2 are two solutions

of (B2) such thatf0
λi→ fi (i = 1, 2) andfj 6= 0 (j = 0, 1, 2). Thenf12 defined by

f0f12 = cDxf1 · f2 (wherec is a non-zero constant)

is a new solution of (B2) which is related tof1 andf2 under the BT (B7) with parameters
λ2 andλ1 respectively.
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Now using proposition B.3 and the results above, we have, as an illustrative example,

Therefore(1−px) exp(η)+(1+px) exp(−η) and(3x−3px2+p2x3+12p2t) exp(η)+
(3x + 3px2 + p2x3 + 12p2t) exp(−η) are solutions of the KdV equation (B2), where
η = px − 4p3t + η0; p andη0 are constants. It is apparent that more solutions of (B2) can
be found following this line.

We now turn to the Boussinesq equation

3utt + 3(u2)xx + uxxxx = 0. (B8)

By the dependent variable transformu = 2(ln f )xx , equation (B8) is written in bilinear
form as

(D4
x + 3D2

t )f · f = 0. (B9)

A BT for (B9) is [24]

(Dt +D2
x)f · f ′ = 0 (D3

x − 3DxDt)f · f ′ = 0. (B10)

We represent (B10) symbolically byf → f ′. Concerning (B9), we have the following
result.

Proposition B.4. Supposef0, f1 andf12 are three solutions of (B9);f0→ f1→ f12→
f0 andf0, f1 6= 0. Then there exists anf2 determined by

Dxf1 · f2 = cf0f12 (wherec is a non-zero constant) (B11)

such thatf2 is a new solution of (B9) and

f0→ f2→ f12.

Proof. First we choose a particular solutioñf2 from (B11). Thus we have

Dxf1 · f̃2 = cf0f12.

In this case, we have

Dx [Dtf1 · f̃2+ cDxf0 · f12] · f 2
1 = 0

which implies that

Dtf1 · f̃2+ cDxf0 · f12 = k(t)f 2
1 (B12)

wherek(t) is a suitable function oft . Now we choose

f2 = f̃2+ f1

∫ t

k(t ′) dt ′.

It is easily verified thatf2 satisfies (B11) and

Dtf1 · f2+ cDxf0 · f12 = 0. (B13)

Furthermore, a detailed calculation shows that

(Dt +D2
x)f0 · f2 = 0 (Dt +D2

x)f2 · f12 = 0

(D3
x − 3DxDt)f0 · f2 = 0 (D3

x − 3DxDt)f2 · f12 = 0.

Thus we have completed the proof of proposition B.4. �
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As an application of proposition B.4, we can obtain the homogeneous degree polynomial
solutions of (B9). To this end, we define the degree ofx and t as

deg(x) = 1 deg(t) = 2.

We seek polynomial solutions of (B9) via the following steps. First choose polynomial seed
solutionsf0, f1 andf12 of (B9) such that

f0→ f1→ f12→ f0

and deg(f0) = m, deg(f1) = n, deg(f12) = l. Secondly, we find a particular polynomialf̃2

of degreem+l−n+1 such that (B11) holds. From (B12), we know whenm+l is not divided
by 2, k(t) is a monomial oft of degree(m+ l−n+1−2−n)/2= (m+ l−2n−1)/2, i.e.
k(t) = kt(m+l−2n−1)/2 (k is a constant). Whenm+ l | 2, we can easily deduce thatk(t) = 0.
Now we set

f2 = f̃2 m+ l is not divided by 2

f2 = f̃2+ 2k

m+ l − 2n+ 1
t (m+l−2n+1)/2 m+ l is not divided by 2.

Thenf2 is a polynomial solution of (B9) andf12→ f0 → f2 → f12, and we can choose
f12, f0, f2 as new seed solutions of the next step. In this way, we can obtain a series of
polynomial solutions of (B9) step by step. For example, chooseP0 = 1, P1 = x, P2 =
t + 1

2x
2, and we haveP1 → P0 → P2 → P1. It is easily verified thatP̃4 = x4 + 4tx2

satisfiesDxP0 · P̃4 = −8P1P2, andDtP0 · P̃4 − 8DxP1 · P2 = −8tP 2
0 . ThereforeP4 =

P̃4−4t2P0 = x4+4tx2−4t2 is a solution of (B9) andP2→ P1→ P4→ P2. Furthermore,
it can be verified thatP6 = x6 + 10x4t + 20x2t2 + 40t3 satisfiesDxP1 · P6 = −10P2P4

andP4→ P2→ P6→ P4. In general, along this line, we can deduce recursively a series
of polynomial solutions of (B9). In the following we begin with another recursion process.
We haveP0 → P1 → P2 → P0. It is easily verified thatQ2 = t − 1

2x
2 satisfies that

DxP1 · Q2 = P0P2 andDtP1 · Q2 − DxP0 · P2 = 0. ThereforeQ2 is a solution of (B9)
andP2→ P0→ Q2→ P2. Furthermore, it can be verified thatQ5 = x5 − 20t2x satisfies
DxP0 ·Q5 = 20P2Q2, andDtP0 ·Q5 − 20DxP2 ·Q2 = 0. ThereforeQ5 is also a solution
of (B9) andQ2→ P2→ Q5→ Q2. In general, along this line, we can deduce recursively
another series of polynomial solutions of (B9). Besides, it is noted that iff (x, t) is a
solution of (B9), thenf (−x, t), f (x,−t) are also solutions of (B9). Thus more polynomial
solutions of (B9) can be found.

Appendix C. Proof of proposition 2.2

First we choose a particular solutionF from (2.4). Thus we have

Dxf1 · F = cf0f12.

In this case, we have, similar to (B12),

Dyf1 · F + c

a
Dxf0 · f12 = k1(t, y)f

2
1 (C1)

wherek1(t, y) is a suitable function oft andy. Furthermore, we have

0= [(Dt +D3
x − 3aDxDy)f0 · f1]f1f12− f0f1(Dt +D3

x − 3aDxDy)f1 · f12

= Dtf0f12 · f 2
1 +

1

4
D3
xf0f12 · f 2

1 +
3

4
Dx [(D2

xf0 · f12) · f 2
1

+f0f12 · (D2
xf1 · f1)] − 3a

2
Dx(Dyf0 · f12) · f 2

1
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−3a

2
Dy(Dxf0 · f12) · f 2

1

= Dx

[
1

c
Dtf1 · F + 3

4
D2
xf0 · f12− 3a

2
Dyf0 · f12

]
· f 2

1

+ 1

4c
D3
x(Dxf1 · F) · f 2

1 +
3

4c
Dx(Dxf1 · F) · (D2

xf1 · f1)

+3

2
Dx [(D2

xf0 · f1) · f1f12− f0f1 · (D2
xf1 · f12)]

= Dx

[
1

c
Dtf1 · F + 3

4
D2
xf0 · f12− 3a

2
Dyf0 · f12

]
· f 2

1

+ 1

4c
D3
x(Dxf1 · F) · f 2

1 +
3

4c
Dx(Dxf1 · F) · (D2

xf1 · f1)

+3

2
Dx [(D2

xf0 · f12) · f 2
1 − f0f12 · (D2

xf1 · f1)]

= Dx

[
1

c
Dtf1 · F + 9

4
D2
xf0 · f12− 3a

2
Dyf0 · f12

]
· f 2

1

+ 1

4c
D3
x(Dxf1 · F) · f 2

1 −
3

4c
Dx(Dxf1 · F) · (D2

xf1 · f1)

= Dx

[
1

c
Dtf1 · F + 9

4
D2
xf0 · f12− 3a

2
Dyf0 · f12+ 1

4c
D3
xf1 · F

]
· f 2

1

which implies that

Dtf1 · F + 9c

4
D2
xf0 · f12− 3ac

2
Dyf0 · f12+ 1

4
D3
xf1 · F = k2(t, y)f

2
1 (C2)

wherek2(t, y) is a suitable function oft, y. We can prove that

Dy

[
1

c
Dtf1 · F + 9

4
D2
xf0 · f12− 3a

2
Dyf0 · f12+ 1

4c
D3
xf1 · F

]
· f 2

1

= Dt

[
1

c
Dyf1 · F + 1

a
Dxf0 · f12

]
· f 2

1

which implies k2y = k1t . We choosek(t, y) such thatkt = k2, ky = k1 and set
f2 = F + k(t, y)f1. It is easily verified thatf2 satisfies (2.4) and

Dyf1 · f2+ c

a
Dxf0 · f12 = 0 (C3)

Dtf1 · f2+ 9c

4
D2
xf0 · f12− 3ac

2
Dyf0 · f12+ 1

4
D3
xf1 · f2 = 0. (C4)

Using (C3) and (C4), we can prove

(aDy +D2
x)f0 · f2 = 0 (Dt +D3

x − 3aDxDy)f0 · f2 = 0

and

(aDy +D2
x)f2 · f12 = 0 (Dt +D3

x − 3aDxDy)f2 · f12 = 0.

Thus we have completed the proof of proposition 2.2.
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